Dubugging HRMS Fast Formula

An Oracle White Paper
May 2005

ORACLE

Debugging HRMS Fast Formula

EXecutive OVEIVIEW ..ucviviieiciitcictcieiciee s 3
INtrOdUCHON ..o 3
Debugging TechnIqUES.....c.ccuiuiuiiiiiiiiiiiiceceeee s 3
Message output from Fast Formulae........ccccoovvvninniiiiicnns 4
Logging from Fast Formula execution enginec.coceeeevevvciccccnnes 4
Enabling the Fast Formula Logging through code.........ccccoueuvuuncece. 5
Enabling the Fast Formula Logging through a profile....................... 5

Fast Formula Logging SWitChesccccoviiiiiiviiiiciiniiccciccans 5
Interpreting the OULPUL......ccciiiiiiiiciirree 6
Example: Using seeded PTO formula to derive net accruals............. 7
Using PYUPIP with Oracle Fast Formula........ccccoooeviiiinnnnnen. 10
Enabling PYUPIP trace from within formulaecccccovvurivinnnnee. 10
Isolating formula from the calling Application..........ccccceeueceicicicicicunnnnnns 13
Calling Formula from PL/SQL.....c.ooiiiririeicincrcireciseceseeeeneen. 13
Determining the CONEXLS......ccciiiiuimiriiiuiieininiiiireiceeeeeeeenens 13
Debugging Formula Using the Compiled Package.........ccecvuvinnnnenes 13
Formula Execution Package........cccccouvuvivivinininiicciiicccccccciee 14
PL/SQL Formula Wrapper Package........cccocveurieincincnininicncincnins 14

Line numbers in formulae ..o 15
Formula BTOrs ... 16
Common Formula Compilation Errofrs ..., 16
Common Formula Run Time E1rors. ... 17
Troubleshooting Database Items ... 19
Troubleshooting Formula Functions..........cccccceevvvninnninnininiccccnnes 20
CONCIUSION. ...ttt s 21
Appendix A — Formula Test Function : ExecuteFF ... 22
Appendix B — GetContext function........cceevevevevviiciccccceeeeeenennens 24
Appendix C — Example PL/SQL Package......c.cccveeureeuneeunecunecenecnneennes 26
Appendix D — Database Item Script.......coovvivvinininiiiccccccceceeenens 28
Appendix E — Related Documents.........ccceeveivivinnniiicccccccccccenens 29

White Paper Title Page 2

Debugging HRMS Fast Formula

EXECUTIVE OVERVIEW

This paper is produced in response to a request from Oracle Support for additional
information about how to diagnose issues in Fast Formula. The paper is suitable
for both internal and external use.

It includes a number of techniques for debugging formulae. It also discusses some
of the common etrors that arise when writing/compiling formulae and provides

suggested approaches for correcting them.

INTRODUCTION

Oracle Fast Formula is used widely in the HRMS product to provide developers
and implementers the capability to configure validation and processing rules and
calculations. It uses a simple programming language that recognizes objects that
exist in the HRMS schema, allowing the formula to process HRMS data items
directly.

When writing formula it is useful to be able to determine the processing flow so
that diagnosis or debugging of problems can be performed easily. In the
Debugging Techniques section this paper discusses 3 methods for extracting
logging/debugging information, these include using the standard output form the
formula, using the native fast formula engine logging output and embedded trace
statements in the formula itself.

There are a number of common errors that can arise when either compiling or
running formulae. Techniques for identifying the causes of these errors and

suggested fixes are discussed in the Fast Formula Errors section.

The paper is intended for anyone who is developing, supporting or implementing
fast formulae. It does not contain any HRMS product specific information and it
does not discuss best practice techniques for implementing functionality using Fast

Formulae.

There is a list of related documents that are available on Metalink in Appendix E.

DEBUGGING TECHNIQUES

There are essentially 3 methods for extracting logging or debug output from a Fast
Formula. Theses are as follows:

White Paper Title Page 3

1. Using the Message output from the formula
2. Using the native Fast Formula engine logging capabilities

3. Embedding trace statements in the formula and using PYUPIP to capture
the output.

These 3 techniques are discussed below.

Message output from Fast Formulae

The simplest method of passing debug messages out of a fast formula is to use the
Fast Formula RETURN statement. The value from the RETURN statement will
appear in the Run Results form if the payroll is being run through payroll,
otherwise it will appear in the outputs of the formula when processed in PL/SQL.

The following example will output a value in the MESG return variable:

/*

Formula Name : TEST

Description : Test formula

Contexts : DATE_EARNED, ASSIGNMENT_ID
*/

default for per_first_name is ' '
default for per_last_name is ' '

mesg = 'Person is ' + per_first_name + ' ' + per_last_name

return mesg

Although this techniques is quick and easy to use it is limited in use because the
message variable can only ever have 1 value. If additional trace output were
required further messages would have to be added to the formula. This limitation
can be overcome using the PYUPIP method - see below.

Logging from Fast Formula execution engine

The Fast Formula execution engine is the PL/SQL ot C code that actually
executes the formulae when initiated from a calling HRMS application.

It can be configured to provide some useful debugging information including
® TFormula definition and corresponding PL/SQL wrapper package.
® The values of the formula inputs and outputs.
® The database items used in the formula and their derived values.

The logging information is sent to either a PYUPIP trace or in the case of the
payroll run to the log file (if the LOGGING PAY_ACTION_PARAMETER

value is set).

To enable the Fast Formula logging feature a set of switches are used, each switch
controls a different portion of the logging output allowing you to control the level
of output you receive.

White Paper Title Page 4

There ate 2 ways to enable the Fast Formula engine debug, the first is to enable the
switches in PL/SQL code, and the second is to use a profile option.

Enabling the Fast Formula Logging through code

The code method uses has the following syntax:

ff_utils.set_debug({ff switch 1} + {ff switch 2} . . .);
where the ff switches are listed in the table below.

Enabling the Fast Formula Logging through a profile

The alternate method uses the HR: FastFormula debug level (FF_DEBUG) profile
option. Its value is set to a string of characters each of which represents one of the
desired switches. The characters for each setting are also shown in the table below.
(N.B. When setting this profile its value should always start with X’ to indicate
that ‘user exit’ logging should be allowed.).

Fast Formula Logging Switches

The following table lists the set of Fast Formula logging switches and indicates the
type of output generated by each switch:

Switch Profile | PL/SQL Trace Output
Routing R ff_utils ROUTING This outputs information on the procedures
Informatio accessed during execution.
n
The trace will output:
In: <procedure_name>
Out <procedure_name>
General F ff_exec.FF_DBG Covers any general debug information relevant
Debug to the module, not for a specific formula.
General FF C ff_exec. FF_CACHE_DBG This outputs information held in the formula
Cache cache for a specific formula. This includes the
Informatio fdiu rows, but not the MRU chain.
n
Database D ff_exec. DBI_CACHE_DBG Gives information about the database item
Item Cache cache entries.
Debug
MRU/LRU | M ff_exec. MRU_DBG Gives information about the MRU chain
Chain entries.
Debug
User Input I ff_exec.IO_TABLE_DBG User input and output table debug,.
and Output
Table Gives information about the input and output
Debug tables that are accessed by the user to
communicate with formula.

The following examples show how to enable the FF engine logging for Routing
and General Cache information.

Explicit setting in PL/SQL:

ff utils.set_debug(ff_utils.ROUTING
+ ff_ exec.FF_CACHE_DEBUG) ;

White Paper Title Page 5

Via a profile option:
Fnd_profile.put (‘FF_DEBUG’, "XRC') ;

Interpreting the output

For the example formula above (in the listed Message Output from Fast Formula
section) the following output is piped into the PYUPIP trace when it is run using
the PL/SQL test function.

Routing Information (profile setting = R)

In : load_formula

In : ff_ fetch

In : write_dbi_cache

In : find_dbi_cache_entry

Out : find_dbi_cache_entry
Out : write_dbi_cache
In : write_dbi_cache

General Debug Information (profile setting = F)

No additional logging information

General FF Cache Information (profile setting = C)
<- Free Chunk List -—>
ff _fetch add to FDIU from end of list:1,4

FMLA CACHE info for formula_id 63208

Eff Start : 16-MAY-2005

Eff End : 31-DEC-4712

Fmla Name : JRTEST2

Package : FFP63208_16052005

First FDIU : 1

FDIU Count 4

Ctx count 3 2

In count 0

Out count 0

FDIU ROWS

[FDIU] Item Name V[POS] I[POS] Dtype U CSum ContextId
ASSIGNMENT_TID 1 =i NUMBER U 8 113
DATE_EARNED 1 =1 DATE U 32 115
PER_FIRST_NAME 1 1 TEXT D 40 3665134
PER_LAST_NAME 2 2 TEXT D 40 3665050

Useful information includes the formula name and ID, as well as the contexts that
will be needed for the formula to execute (the contexts have ‘U’ in the U column,

‘D’ represents database items).

Database Item Cache Information (profile setting = D)
[DBI]Indx DbItem/Context Name Context Lev Value

113 ASSIGNMENT_ID 8 12167
115 DATE_EARNED 32 2005/05/18 05:02:00
1 PER_FIRST_NAME 40 John-1
65 PER_LAST_NAME 40 Test-1
[HSH] Indx First Count
3665050 65 1
3665134 1 1

White Paper Title Page 6

CTXCH: DATE_EARNED 32 2005/05/18 05:02:00 2005/05/18 05:02:12
INVAL: PER_FIRST_NAME 40 32 John
INVAL: PER_LAST_NAME 40 32 Test

Useful information includes the actual values passed into the formula as well as the
derived values of the DB Items.

MRU/LRU Chain Information (profile setting = M)

No additional logging information

User Input and Output Table Information (profile setting = I)

[IT]Index Input/Context Name Dtype Class Value
1 ASSIGNMENT_ID NUMBER CONTEXT 12167
2 DATE_EARNED DATE CONTEXT 2005/05/18 05:06:05

Useful information includes the values passed in and out of the formula.

Of the above settings the ones that provide the most useful initial logging
information are CDL. It is therefore recommended that when setting the
HR:FastFormula debug level profile option it should be set to XCDT".

Example: Using seeded PTO formula to derive net accruals.

With the above profile settings in place an accrual plan is created using the seeded
PTO_SIMPLE_MULTIPLIER formula that has the following definition:

NAME : PTO_SIMPLE_CARRYOVER
This formula is the seeded carryover folmula for our simple
multiplier accrual plan

*/

DEFAULT FOR ACP_CONTINUOUS_SERVICE_DATE IS '4712/12/31 00:00:00' (date)
DEFAULT FOR ACP_SERVICE_START_DATE IS '4712/12/31 00:00:00' (date)

INPUTS ARE
Calculation_Date (date),
Accrual_term (text)

Effective_Date = to_date('3105"
+ to_char (Calculation_date, 'YYYY'), 'DDMMYYYY')

IF (Accrual_Term = 'CURRENT')
AND (Effective_Date < Calculation_Date) THEN
(

Effective_date = ADD_YEARS (Effective_Date, 1)
)
ELSE IF (Accrual_term = 'PREVIOUS')

AND (Effective_Date >= Calculation_Date) THEN

(

Effective_date = ADD_YEARS (Effective_Date, -1)
)

Expiry_Date = add_years (effective_date, 1)

Max_carryover = 5
Process = 'YES'

White Paper Title Page 7

RETURN Max_Carryover, Effective_date, Expiry_Date, Process

The calculation of the accrual occurs when querying up the accrual plan in the

absence form.

Type JR Vacation Category Vacation
Reason 4
[
Dite Accrual Plan Name |JR TEST
Motified 01-JAN-2005
Projected Start Accrual Category ‘Vacalion
Actual Start 10-JAN-2005 Unts Days |

End of Plan

Authorized by
Replaced by

Before Absence After Absence

Balance Information
Associated Element JR A

Effactive Date [09-JAN-2005 [10-JAN-2005

Running Total | 5 Met Entitlement |l] |_5

In Current Year 5

Accruals

Performing this operation produces the following trace output (FF engine logging
information highlighted).

White Paper Title Page 8

connected: monitoring pipe PID66

2
Entering

per_accrual_calc_functions.Get_Net_Accrual

ENTERING

PER_ACCRUAL_CALC_FUNCTIONS.GET_NET_ACCRUAL
for assignment 14058

FMLA CACHE info for formula_id 49

Eff Start 01-JAN-0001

Eff End 31-DEC-4712

Fmla Name PTO_SIMPLE_MULTIPLIER ‘ I:()Ijllllla

Package : FFP49_01010001 :

T o & Information

FDIU Count 0 17

Ctx count 5

In count 1

Out count 4

FDIU ROWS

[FDIU] Item Name V[POS] [POS] Dtype U CSum ContextId

ACCRUAL_PLAN_ID 1 =1 NUMBER U B3886 133

ASSIGNMENT_ID 2 -1 NUMBER U 8 113 Contexts
BUSINESS_GROUP_ID 5 =1 NUMBER U

DATE_EARNED 2 =i DATE U 32 115

PAYROLL_ID 6 =1 NUMBER U, 2 111

ACCRUAL_END_DATE 8 10 DATE [0}

CALCULATION_DATE 1 1 DATE I

EFFECTIVE_END_DATE 10 12 DATE O II]I)lltS and
EFFECTIVE_START_DATE 9 11 DATE (0]

TOTAL_ACCRUED_PTO 3 6 NUMBER O ()lltI)lltS
ACP_CONTINUOUS_SERVICE_DA 7 7 DATE D

ACP_ENROLLMENT_END_DATE 3 2 DATE D

ACP_ENROLLMENT_START_DATE 4 3 DATE

ACP_INELIGIBILITY_PERIOD_ 4 9 NUMBER

ACP_INELIGIBILITY_PERIOD_ 1 8 TEXT Database
ACP_SERVICE_START_DATE 6 5 DATE

ACP_TERMINATION_DATE 5 4 DATE Ttems
Handle inputs per_formula_functions.run_formula

Run Formula

per_formula_functions.run_formula

[IT]Index Input/Context Name Dtype Class Value
1 ACCRUAL_PLAN_ID NUMBER CONTEXT 661
2 ASSIGNMENT_ID NUMBER CONTEXT 14058
3 BUSINESS_GROUP_ID NUMBER CONTEXT 3384 47 Context and
4 DATE_EARNED DATE CONTEXT 2005/01/09 00:00:00
5 PAYROLL_ID NUMBER ~CONTEXT 7002 II]I)11t<\Zallles
6 CALCULATION_DATE DATE INPUT 2005/01/09 00:00:00
[DBI]Indx DbItem/Context Name Context Lev Value
110 BUSINESS_GROUP_ID 1 3384
111 PAYROLL_ID 2 7002
113 ASSIGNMENT_ID 8 14058
115 DATE_EARNED 32 2005/05/31 00:00:00
133 ACCRUAL_PLAN_ID 8388608 661
1 ACP_CONTINUOUS_SERVI 8388648 <NULL>-2 .
65 ACP_ENROLLMENT_END_D 8388648 4712/12/31 00:00:00-1 Denved DBI
129 ACP_ENROLLMENT_START 8388648 2005/01/01 00:00:00-1 47
193 ACP_INELIGIBILITY_PE 8388608 <NULL>-2 \/allles
257 ACP_INELIGIBILITY_ PE 8388608 <NULL>-2
321 ACP_SERVICE_START_DA 40 2003/01/01 00:00:00-1
385 ACP_TERMINATION_DATE 40 <NULL>-2
[HSH] Indx First Count
1767 385 1
1947 321 1
2004 65 1
2187 129 1
2342 1 1
2479 257 1
2607 193 1
INVAL: ACP_CONTINUOUS_SERVI 8388648 32 <NULL>
INVAL: ACP_ENROLLMENT_END_D 8388648 32 4712/12/31 00:00:00
INVAL: ACP_ENROLLMENT_START 8388648 32 2005/01/01 00:00:00
INVAL: ACP_SERVICE_START_DA 40 32 2003/01/01 00:00:00
INVAL: ACP_TERMINATION_DATE 40 32 <NULL>
[0T]Index Input/Context Name Dtype Value
1 ACCRUAL_END_DATE DATE <NULL> ()lltI)llt
2 EFFECTIVE_END_DATE DATE 2005/01/09 00:00:00 ‘ V 1
3 EFFECTIVE_START_DATE DATE 2005/01/01 00:00:00 alues
4 TOTAL_ACCRUED_PTO NUMBER 0

White Paper Title Page 9

Using PYUPIP with Oracle Fast Formula
One of the best ways to debug Fast Formula is to embed trace statements directly

into the formula and then to use PYUPIP to capture the trace output.

A formula function named HR_TRACE (alias HRTRACE) is already delivered
that provides a mechanism for tracing out specific messages to the PYUPIP pipe.

The example formula below shows how this function can be used to output lines
into the PYUPIP trace (this assumes that the PYUPIP trace has been enabled
prior to the formula being called):

/*
Formula Name : TEST
Description : Test formula
Contexts : DATE_EARNED, ASSIGNMENT_TID
*/

default for per_first_name is ' '

default for per_last_name is ' '

errmsg = ' '

ret
ret

hrtrace (per_first_name)
hrtrace (per_last_name)

Enabling PYUPIP trace from within formulae

Sometimes it may be convenient to turn the PYUPIP trace on only for the
duration of a single formula or a series of formulae, as opposed to enabling it at

the start of a process.

Oracle HRMS delivers the following PL./SQL functions in the PQP_UTILITIES
package that allow the PYUPIP utility to be turned on and off from within a

formula:

FUNCTION set_trace_on

p_trace_destination IN VARCHAR2
,p_trace_coverage IN VARCHAR2
,p_error_message OUT NOCOPY VARCHAR2

)
RETURN NUMBER;

This enables the PYUPIP trace with output going to the pipe named in
P_TRACE_DESTINATION.

FUNCTION set_request_trace_on/(
p_error_message OUT NOCOPY VARCHAR2)
RETURN NUMBER;

This enables the PYUPIP trace with output going to the pipe with name
comprised of “REQID’ | |Concurrent Process ID.

FUNCTION set_trace_off (

White Paper Title Page 10

p_error_message OUT NOCOPY VARCHAR2)

RETURN NUMBER;

This disables the PYUPIP trace.

In order to make use of these functions in Fast Formulae it is necessaty to create

some user defined Formula Functions. These should have the following

definitions:

Name SET_TRACE_ON

Data Type Number

Class External Function

Definition POQP_UTILITIES.SET_TRACE_ON

Parameters

Number | Parameter Name Type Class

1 P_TRACE_DESTINATION Text Input Only
2 P_TRACE_COVERAGE Text Input Only
3 P_ERROR_MESSAGE Text Output Only
Name SET_REQUEST_TRACE_ON

Data Type Number

Class External Function

Definition POQP_UTILITIES.SET_REQUEST_TRACE_ON
Parameters

Number | Parameter Name Type Class

1 P_ERROR_MESSAGE Text Output Only
Name SET_TRACE_OFF

Data Type Number

Class External Function

Definition POQP_UTILITIES.SET_TRACE_OFF
Parameters

Number | Parameter Name Type Class

White Paper Title Page 11

1 P_ERROR_MESSAGE Text Output Only

The example formula below shows how these functions can be combined to
generate PYUPIP trace output from a formula:

/*

Formula Name : TEST

Description : Test formula

Contexts : DATE_EARNED, ASSIGNMENT_TID
*/

default for per_first_name is ' '
default for per_last_name is ' '

errmsg = "' '

retcode = set_trace_on ('TRACEOUT', 'F', errmsqg)
ret = hrtrace(per_first_name)

ret = hrtrace(per_last_name)

retcode = set_trace_off (errmsgqg)

When this formula is run the following PYUPIP trace output is produced:

PYUPIP apps/apps@hremeadv TRACEOUT
connected: monitoring pipe TRACEOUT
1

2

John

Smith

White Paper Title Page 12

ISOLATING FORMULA FROM THE CALLING APPLICATION

Sometimes when debugging formulae it is convenient to isolate the formula and
run it sepatately. It can also be useful to analyze the PL/SQL code that is
generated when a formula is compiled.

This section discusses these topics.

Calling Formula from PL/SQL
Sometimes when debugging formulae it is convenient to isolate the formula and

run it separately.

This can be achieved using the function defined in Appendix A — Formula Test

Function.

This PL/SQL function accepts the FORMULA_ID and the values of any formula
contexts that are needed. The example formula above would be executed in
PL/SQL using the following statement:

Begin
ExecuteFF (p_formula_id => 63208
,P_assignment_id => 12167
,p_date_earned => sysdate) ;
end;

Determining the contexts

In order to be able to use this technique it is necessary to know the correct context
types that need to be passed into the formula, the following SQL provides this

information:

select fdi.item_name

from ff_fdi_usages_f fdi

where fdi.formula_id = {formula Id}
and fdi.usage = 'U';

In order to replicate the behaviour of the formula in the calling application, it will
be necessary to pass in the same context values as used in the calling application.

In Appendix B there is a formula function named GetContext. This can be added
to the formula in the calling application to provide PYUPIP trace output that
includes the contexts and their values. Alternatively the FND_LOGGING
described above can also be used to determine this information.

Debugging Formula Using the Compiled Package

There are 2 types of PL/SQL package that are generated from Fast Formula, one
is generated when the formula is compiled the form or the FFEXBCP command,
the other is generated when the Generate Formula Wrapper Formula concurrent
process is used.

White Paper Title Page 13

Formula Execution Package

When a formula is compiled either through the form or the FFEXBCP command a
PL/SQL package is generated that is used when a formula is executed from
PL/SQL. Its name will be made up as follows:

FFP + Formula ID + _ + DDMMYYYY e.g. FFP63208_17052005

If however a compilation error occurs in the Formula Definition form the package
will not be created in the database. In order to generate the package for further
analysis the following command needs to be used (N.B. the —k switch keeps the
PL/SQL package even if etrors are detected):

FFXBCP username/pwd@db 0 Y -k %% FormulaName

An example formula and its corresponding PL/SQL package is show in Appendix
C — Example PL/SQL package including pointets to the vatious sections of code
and how they relate the formula being generated.

If a formula compilation error occurs which cannot be resolved in the Formula
Definition form then analyzing the PL/SQL formula execution package can help
to diagnose the problem. Useful techniques include the following :

® Adding further trace statements

® Extracting individual SQL statements that have been generated to detive

the values of any database items

® Isolating function calls for closer scrutiny.

PL/SQL Formula Wrapper Package

Oracle supplies a package header named ff_wrapper_main_pkg (was
tf_wrapper_pkg), known as the “Wrapper Package’. The Generate Formula
Wrapper concurrent program creates the body for this package. This package is the
1st package that is called by the PL/SQL Execution Engine to execute a formula
unless the FF_USE_PLSQL_WRAPPER pay action parameter is set to N.

At the same time the Generate Formula Wrapper concurrent program also
generates a set of packages that correspond to the FFP packages described above.
These are generated with the name format as follows:

FFW + Formula ID + _ + DDMMYYYY e.g. FFW63208_17052005

The Wrapper Package calls the FEW package and the FFW package itself calls the
corresponding FFP package. The FFW package is created as an intermediary
package to ensure that the Wrapper Package is not invalidated if a formula
becomes uncompiled (which results in the FFP package being removed).

The Wrapper package is mentioned here for completeness but is not particulatly

useful when debugging formula issues.

White Paper Title Page 14

Line numbers in formulae

When the formula engine raises an error it generally indicates which line the error
occurred on. If the formula is not particularly big it will be easy to find the line,
however if the formula is long it can be arduous to find the specific line.

As an alternative it is sometimes possible to correlate the code generated in the
PL/SQL execution package to the lines in the Fast Formula. The PL/SQL package
contains a local variable (L_ PLS_INTEGER) that is set to the corresponding Fast
Formula line number ahead of the PL/SQL processing that implements the

formula functionality.

White Paper Title Page 15

FORMULA ERRORS

Common Formula Compilation Errors

Compile-time errors occur when attempting to save the formula from the Write
Formulas window or the Bulk Compile Formulas process. An issue with an
underlying formula function or database item typically causes these errors.

The following list of errors shows the most common types of issue:

Error: Unknown Function used in statement
APP-FF-33008: Unknown function 'FN' used in statement at line 7.

This may be because there is no function with the name or alias 'FN'.
Alternatively, all 'FN' functions use formula contexts that are not
available to this formula type.

This error occurs when a function is referenced in a formula and the formula type

does not support the function contexts used.

Resolution: Determine the contexts that are supported by the formula type and
ensure that the functions being called do not use contexts that are not supported.

Error: Internal Error

APP-FF-33980: Internal error.

A compilation error has been detected while attempting to generate
package FFP63208_16052005

Please consult your system administrator.

This error occurs if there is any invalid PLSQL - this can occur in the following
situations:

a) function definition text is invalid

b) database item definition text is invalid

¢) database item route text is invalid

d) The function used in ff_function definition is being passed the wrong
numbet/types of parameters. This can occur if the seed data for the function is
inconsistent with the plsql used in the definition text as you stated.

The term 'invalid' refers to non-existent tables, PL/SQL functions, or is
syntactically invalid PL./SQL, or semantically invalid for the context in which it is
being used.

Resolution: Analyse the PL/SQL function or database item being called to
determine the invalid PL/SQL.

Error: The local variable was used before being initialized

APP-FF-33005: The local variable VAR was used before being initialized
Cause: The variable named in the error message is being used
before any value has been assigned to it, so it has no meaningful

value.

Action: Please ensure variables have been assigned to before
using them.

White Paper Title Page 16

This error occurs when a formula references a variable that has not been initialized
eatlier in the formula. Although this would normally only occur when the formula
is being written there are occasions when a formula references a database item and
for some reason the database item cannot be accessed. This could happen if the
delivery of a seeded database item failed or if the database item requires contexts
that are not available for the formula type being used.

Resolution: If the variable that has not been initialized is not a database item then
ensure that it is initialized in the formula. If it is a database item ensure that it exists
in the database and should be available to the formula based on whether its
legislation code and/or business group. Ensute that the formula type suppotts the
database items contexts.

Common Formula Run Time Errors

Run time errors occur when a formula is actually executed. The usual cause is a
data problem in the formula or the database, in addition coding problems in the
formula or a function can also cause run-time errors or database item called by the

formula.

The following list of errors shows the most common types of issue:

Uninitialized variables

An uninitialized local variable is one that has no value when the formula runs.
This causes an error in all statements except the Return statement. For example:

salary = 20000
tax_band = 2000

if (tax_band < 2000) then
tax = salary / 8

if (tax_band > 2000) then
tax = salary / 10

if tax > 1000 then
tax_category = '1'

return tax
This formula fails with an 'Uninitialized variable' message (for the vatiable tax) if
the tax band is set to 2000.

ORA-20001: Variable TAX not initialized at line 10 of JRTEST2

Cause: An attempt has been made to use a local variable before it
was initialized. This is normally detected by the verifier, but in
certain cases this is not possible, and will result in this error.
This problem can be corrected by the altering the formula. Assign an
initial value to the variable before it is referenced in the formula.
Action: Please refer to your system administrator.

Resolution: Ensure that all local variables are initialized before being referenced in

a formula.

White Paper Title Page 17

Divide by Zero

Dividing a number by zero is an operation that provides no logical result. If this
situation ever arises, Oracle Fast Formula passes a code indicating an error back to
the application (the application then takes the appropriate action).

Always check for the possibility of a divide by zero error if there is any chance it
could occur. For example, the formula:

salary = 20000
contribution_percent = 0

x = salary / contribution_percent

produces an error if the contribution proportion is set to zero.

ORA-20001: Divide by zero at line 1 of JRTEST2

Cause: An attempt was made to divide a number by zero. Suppose
that a formula has an input called NUMBER_IN, and a line of the form
NUMBER_OUT = 100 / NUMBER_IN. If NUMBER_IN was passed a value of zero,
then this error would result.

Action: Please refer to your system administrator.

Resolution: In this formula, check for the divide by zero condition as follows:

salary = 20000
contribution_percent = 0

IF contribution_percent = 0 THEN
(message = 'The contribution proportion is not wvalid.'

RETURN message)
ELSE x = salary / contribution_percent

No data found
There are two typical causes for this error:

e A database item was referenced which did not return a value. This
represents an error in the application data.

® A statement in a function raised a No Data Found exception and was not
handled by the function. Commonly, this occurs in the
GET_TABLE_VALUE function.

The first step is to determine which function or database item caused the error

using the line number listed on the error message line.

Resoultion: See the sections below for discussions of troubleshooting database

items and formula functions.

Too Many Rows

This error occurs when a database item returns more than one row. The steps to
troubleshooting this error are the same as the No data found error. See
troubleshooting database items below.

Value exceeded allowable range

This error can be caused by a statement in the fast formula or by a function call.

ORA-20001: Value exceeded allowable range (line 5 of JRTEST2)
Cause: Caused by Oracle error 6502 occurring during the execution
of the formula which is raised when an arithmetic conversion error, or

White Paper Title Page 18

string truncation error occurs. This can also be caused by invalid
dates, for example 39-DEC-1991, 24-MAR-5000

Action: Check your formula for possible invalid dates, numbers or
strings greater than 255 characters in length.

Resolution: If this error is caused by a fast formula statement, is typically due to
one of the following:

® Exceeding the maximum allowable length of a string (which is 255
characters).

® Rounding up a number to an excessive number of places, for example,

round (1,100).
® Using an invalid date, for example, 39-DEC-1990.

If this is error is caused by a call to a function, it is typically due to one of the

following:

® There is a mismatch between the contexts listed in the function
registration and the actual PL/SQL parameters and types. As a result, the
Fast Formula variables are being passed to the wrong PL/SQL parameters
or types.

® The function is returning a null value. Fast Formulas expect a non-null
value to be returned. Modifying the PL/SQL function to return a hard
coded non-null value, then checking if the error still occurs can easily test
this.

Troubleshooting Database Items

A database item is essentially a piece of SQL that is broken into a number of
components, each of which is stored in the tables shown in the diagram below:

FF_DATABASE_ITEMS

FF_ROUTE_
PARAMETER_VALUES

FF_USER_ENTITIES FF_CONTEXTS

FF_ROUTE_
CONTEXT_USAGES

FF_ROUTE_PARAMTERS FF_ROUTES

The entire definition of a Database Item can be retrieved using the script listed in
Appendix D — Database Item script.

White Paper Title Page 19

The output from the script has sections showing the SQL statement, contexts
whose values are substituted into the SQL statement and parameter values that are

also substituted.

The SQL statement will have variables named &B1, &B2 etc.. When the database
item is evaluated these are substituted by the formula context values. It may also
have variables named &U1, &U2 etc.. These will be substituted with the parameter
values shown in the output from the Database Item script.

By substituting these variables into the Database Item SQL it is possible to
recreate the statement that is being executed by the formula and from there to

diagnose any errors arising from the Database Item.

Troubleshooting Formula Functions

If an error is caused by a formula function, the following steps can help to

determine why the function raised the etror:

® Look up the function using the Define Function window (Oracle HRMS
Responsibility 2 Other Definitions). This identifies the function
definition (i.e., the PL/SQL stored function that is executed), the

parameters, and the contexts:

Egj Define Function [_[o]x]

Action Edit Query Go r Special Help

Mame |GET_TABLE_VALUE |

Data Type (Text |V‘

Clags |User Defined Function |v|
Alias Name
Description

|

Defi@ion |hruserdt.get_table_value

Context Usages Parameters

® Add messages to the fast formula to display the parameters and determine
the context values as described above in section Determining the
Contexts.

® Create a script to call the function from SQL*Plus with the identified
parameters and contexts. If the parameters and contexts are correct, this
will raise the same error as the formula:

SQL> declare

2 result varchar2(30);

3 begin

4 result := hruserdt.get_table_value(101,

5 'EMPLOYER 401K MATCH ER PAYROLL TABLE',
6 'Percent Match',

7 ‘1Y)

8 dbms_output.put_line (result);

9 end;

White Paper Title Page 20

SQL> set serveroutput on

SQL> /

declare
*

ERROR at line 1:

ORA-01403: no data found

ORA-06512: at "APPS.HRUSERDT", line 81
ORA-06512: at line 4

® Spool the code for the function using ALL,_ SOURCE and troubleshoot
each SQL statement until the statement that caused the exception is
identified. Replace parameters with the actual values (in this case,
p_table_name and p_business_group_id were replaced):

SQL> select range_or_match

2 from pay_user_tables

3 where upper (user_table_name) =

4 upper ('EMPLOYER 401K MATCH ER PAYROLL TABLE')
5 and nvl (business_group_id, 101) = 101
6 /

no rows selected

CONCLUSION

This document has covered some of the main techniques for diagnosing and
debugging problems in Fast Formula. It also covered some of the common error
cases and suggested ways to troubleshoot them.

If there is any additional information that you think it would be useful to include
please contact HRMS Customer Setvices (hrms_cust_serv_uk@oracle.com).

White Paper Title Page 21

APPENDIX A - FORMULA TEST FUNCTION : EXECUTEFF

The following PL./SQL function can be used to run a formula in isolation from its
normal calling context.

create or replace procedure executeFF
(P_FORMULA_ID IN NUMBER

,P_BUSINESS_GROUP_ID IN NUMBER DEFAULT NULL
,P_PAYROLL_ID IN NUMBER DEFAULT NULL
,P_PAYROLL_ACTION_ID IN NUMBER DEFAULT NULL
,P_ASSIGNMENT_ID IN NUMBER DEFAULT NULL
,P_ASSIGNMENT_ACTION_ID 1IN NUMBER DEFAULT NULL
,P_DATE_EARNED IN DATE DEFAULT NULL
,P_ORG_PAY_METHOD_ID IN NUMBER DEFAULT NULL
,P_PER_PAY_METHOD_ID IN NUMBER DEFAULT NULL
»P_ORGANIZATION_ID IN NUMBER DEFAULT NULL
,P_TAX_UNIT_ID IN NUMBER DEFAULT NULL
,P_JURISDICTION_CODE IN VARCHAR2 DEFAULT NULL
,P_BALANCE_DATE IN DATE DEFAULT NULL
,P_ELEMENT_ENTRY_ID IN NUMBER DEFAULT NULL
,P_ELEMENT_TYPE_ID IN NUMBER DEFAULT NULL
yP_ORIGINAL_ENTRY_ID IN NUMBER DEFAULT NULL
»P_TAX_GROUP IN VARCHAR2 DEFAULT NULL
,P_PGM_ID IN NUMBER DEFAULT NULL
,P_PL_ID IN NUMBER DEFAULT NULL
,P_PL_TYP_ID IN NUMBER DEFAULT NULL
,P_OPT_ID IN NUMBER DEFAULT NULL
,P_LER_ID IN NUMBER DEFAULT NULL
,P_COMM_TYP_ID IN NUMBER DEFAULT NULL
,P_ACT_TYP_ID IN NUMBER DEFAULT NULL
,P_ACCRUAL_PLAN_ID IN NUMBER DEFAULT NULL
,P_PERSON_ID IN NUMBER DEFAULT NULL
,P_SOURCE_ID IN NUMBER DEFAULT NULL
»P_SOURCE_TEXT IN VARCHAR2 DEFAULT NULL
, P_SOURCE_TEXT2 IN VARCHAR2 DEFAULT NULL
»P_SOURCE_NUMBER IN NUMBER DEFAULT NULL
,P_LOCAL_UNIT_ID IN NUMBER DEFAULT NULL) IS

-- Define Local Variables

1_formula_id ff formulas_f.formula_ idS$TYPE;
1_effective_start_date ff_formulas_f.effective_start_date%TYPE;
1_inputs ff_exec.inputs_t;

1_outputs ff_exec.outputs_t;

Begin

insert into fnd_sessions
values (userenv ('SESSIONID'), sysdate);

-- Initialize the formula

select formula_id,effective_start_date
into 1_formula_id,l_effective_start_date
from ff_formulas_f
where formula_id = p_formula_id;
ff_exec.init_formula (l_formula_id,
1_effective_start_date,
1_inputs,
1_outputs
)i
if (l_inputs.first is not null) and (l_inputs.last is not null)
then
—- Set up context values for the formula
for 1_in_cnt in 1_inputs.first..l_inputs.last

loop
if 1_inputs(l_in_cnt).name='BUSINESS_GROUP_ID' then
1_inputs(l_in_cnt).value := P_BUSINESS_GROUP_ID;
end if;
if 1_inputs(l_in_cnt) .name='PAYROLL_ID' then
1_inputs(l_in_cnt) .value := P_PAYROLL_ID;
end if;
if 1_inputs(l_in_cnt) .name='PAYROLL_ACTION_ID' then
1_inputs(l_in_cnt).value := P_PAYROLL_ACTION_ID;
end if;
if 1_inputs(l_in_cnt) .name='ASSIGNMENT_ID' then
1_inputs(l_in_cnt) .value := P_ASSIGNMENT_ID;
end if;
if 1_inputs(l_in_cnt) .name="'ASSIGNMENT_ACTION_ID' then
1_inputs(l_in_cnt).value := P_ASSIGNMENT_ACTION_ID;
end if;
if 1_inputs(l_in_cnt) .name='DATE_EARNED' then
1_inputs(l_in_cnt) .value := fnd_date.date_to_canonical (P_DATE_EARNED) ;
end if;
if 1_inputs(l_in_cnt) .name='ORG_PAY_METHOD_ID' then
1_inputs(l_in_cnt).value := P_ORG_PAY_METHOD_ID;
end if;
if 1_inputs(l_in_cnt) .name='PER_PAY METHOD_ID' then
1_inputs(l_in_cnt) .value := P_PER_PAY METHOD_ID;
end if;
if 1_inputs(l_in_cnt) .name='ORGANIZATION_ID' then
1_inputs(l_in_cnt).value := P_ORGANIZATION_ID;

White Paper Title Page 22

end if;
if 1 _inputs(l_in_cnt) .name='TAX_UNIT_ID' then
1_inputs(l_in_cnt) .value P_TAX_UNIT_ID;
end if;
if 1_inputs(l_in_cnt) .name='JURISDICTION_CODE' then
1_inputs(l_in_cnt).value := P_JURISDICTION_CODE;
end if;
if 1_inputs(l_in_cnt) .name='BALANCE_DATE' then

1_inputs(l_in_cnt).value := fnd_date.date_to_canonical (P_BALANCE_DATE) ;
end if;
if 1_inputs(l_in_cnt) .name='ELEMENT_ENTRY_ID' then
1_inputs(l_in_cnt) .value := P_ELEMENT_ENTRY_ID;
end if;
if 1_inputs(l_in_cnt) .name='ELEMENT_TYPE_ID' then
1_inputs(l_in_cnt).value := P_ELEMENT_TYPE_ID;
end if;
if 1_inputs(l_in_cnt) .name='ORIGINAL_ENTRY_ID' then
1_inputs(l_in_cnt).value := P_ORIGINAL_ENTRY_ID;
end if;

if 1_inputs(l_in_cnt) .name='TAX_GROUP' then
1_inputs(l_in_cnt) .value P_TAX_GROUP;
end if;
if 1_inputs(l_in_cnt) .name='PGM_ID' then

1_inputs(l_in_cnt) .value P_PGM_ID;
end if;
if 1 _inputs(l_in_cnt) .name='PL_ID' then
1_inputs(l_in_cnt).value := P_PL_ID;
end if;
if 1_inputs(l_in_cnt) .name='PL_TYP_ID' then
1_inputs(l_in_cnt) .value := P_PL_TYP_ID;
end if;
if 1_inputs(l_in_cnt) .name='OPT_ID' then
1_inputs(l_in_cnt).value := P_OPT_ID;
end if;
if 1_inputs(l_in_cnt) .name='LER_ID' then
1_inputs(l_in_cnt) .value := P_LER_ID;
end if;
if 1 _inputs(l_in_cnt) .name='COMM_TYP_ID' then
1_inputs(l_in_cnt).value := P_COMM_TYP_ID;
end if;
if 1_inputs(l_in_cnt) .name='ACT_TYP_ID' then
1_inputs(l_in_cnt) .value := P_ACT_TYP_ID;
end if;
if 1 _inputs(l_in_cnt) .name='ACCRUAL_PLAN_ID' then
1_inputs(l_in_cnt).value := P_ACCRUAL_PLAN_ID;
end if;
if 1_inputs(l_in_cnt) .name='PERSON_ID' then
1_inputs(l_in_cnt) .value := P_PERSON_ID;
end if;
if 1_inputs(l_in_cnt) .name='SOURCE_ID' then
1_inputs(l_in_cnt).value := P_SOURCE_ID;
end if;

if 1_inputs(l_in_cnt) .name='SOURCE_TEXT' then
1_inputs(l_in_cnt) .value := P_SOURCE_TEXT;

end if;
if 1 _inputs(l_in_cnt) .name='SOURCE_TEXT2' then
1_inputs(l_in_cnt).value := P_SOURCE_TEXT2;
end if;
if 1_inputs(l_in_cnt) .name='SOURCE_NUMBER' then
1_inputs(l_in_cnt) .value := P_SOURCE_NUMBER;
end if;
if 1_inputs(l_in_cnt) .name='LOCAL_UNIT_ID' then
1_inputs(l_in_cnt).value := P_LOCAL_UNIT_ID;
end if;
end loop;

end if;

Run the formula

ff_exec.run_formula (l_inputs ,
1_outputs
)i
if 1_outputs.count > 0 then
for 1_in_cnt in 1_outputs.first..l_outputs.last
loop
hr_utility.trace(l_outputs(l_in_cnt) .name ||
1_outputs(l_in_cnt) .value);
end loop;
end if;
End executeFF;
/
commit;
exit;

White Paper Title

Page 23

APPENDIX B — GETCONTEXT FUNCTION

Each formula type has a different set of contexts that it supports. The set of
contexts available for a particular formula type can be determined using the
following SQL:

select c.context_name, ft.formula_ type_name
from f£f_contexts c

7 ff ftype_context_usages fcu

, ff formula_types ft

where ft.formula_ type_name = 'QuickPaint'

and ft.formula _type_id = fcu.formula_type_id
and fcu.context_id = c.context_id;

A function that lists out the contexts passed into it must take into account the
available contexts, so for instance a GetQuickpaintContexts function would only
support the BUSINESS_ GROUP_ID, DATE_EARNED and
ASSIGNMENT_ID contexts.

The example function below works for QuickPaint formula types but would need
to be modified to take into account the contexts supported by formula types other
than QuickPaint.

CREATE OR REPLACE FUNCTION GetQuickpaintContexts
(

BUSINESS_GROUP_ID IN NUMBER DEFAULT NULL,
ASSIGNMENT_ID IN NUMBER DEFAULT NULL,
DATE_EARNED IN DATE DEFAULT NULL,

)

RETURN varchar2 IS

PROCEDURE message (text varchar2
,value varchar2) is
BEGIN
IF value is not null then
hr_utility.trace(text ||'-'||value);
END IF;
END;

PROCEDURE message (text varchar2
,value number) is
BEGIN
Message (text, fnd_number.number_to_canonical (value)) ;
END;

PROCEDURE message (text varchar2
,value date) is
BEGIN
Message (text, fnd_date.date_to_canonical (value)) ;
END;
BEGIN
message ('BUSINESS_GROUP_ID', BUSINESS_GROUP_ID) ;
message ('ASSIGNMENT_ID', ASSIGNMENT_ID) ;
message ('DATE_EARNED', DATE_EARNED) ;

return '0';
EXCEPTION
WHEN OTHERS THEN

RETURN 'ERROR';
END GetQuickpaintContexts;

The following formula function needs to be created to correspond to the above
PL/SQL function:

Name GetQuickPaintContexts

Data Type Text

White Paper Title Page 24

Class

External Function

Definition GetQuickpaintContexts

Parameters

Number | Parameter Name Type Class

1 BUSINESS_GROUP_ID Number | Input Only
2 ASSIGNMENT_ID Number | Input Only
3 DATE_EARNED Date Output Only

The function is then used as follows in the formula:

returnCode = GetQuickPaintContexts ()

White Paper Title Page 25

APPENDIX C — EXAMPLE PL/SQL PACKAGE

The following form generates the PL/SQL package shown below:

inputs are test_input (text)

default for per_first_name is
default for per_last_name is ' '

full_name = per_first_name + ' ' + per_last_name

return full_name

PACKAGE BODY FFP63208_16052005 AS

/*

Code generated by Oracle FastFormula - do not edit. Formula Name:
JRTEST2

*/

PROCEDURE DD(V IN OUT NOCOPY DATE,I IN NUMBER,D IN DATE)
BEGIN IF I=-2 OR I=0 THEN V:=D; END IF; END DD;
PROCEDURE DN (V IN OUT NOCOPY NUMBER,I IN NUMBER,D IN NUMBER)
BEGIN IF I=-2 OR I=0 THEN V:=D; END IF; END DN;

PROCEDURE DT (V IN OUT NOCOPY VARCHAR2,I IN NUMBER,D IN VARCHAR2)
BEGIN IF I=-2 OR I=0 THEN V:=D; END IF; END DT;

PROCEDURE FORMULA IS

Is

Is

L_D FF_WRAPPER_PKG.T_DATE
L_T FF_WRAPPER_PKG.
L_N FF_WRAPPER_PKG

RV PPER_PKG.G_D;
KG.G_T;

FF_WRAPPER]

L_I FF_WRAPPER_PKG
L_ERCD NUMBER;
L_ERLN NUMBER;
L_ERMT VARCHAR2 (255);
BEGIN
FORMULA(L_D,L_N,L_T,L_I,L_ERLN,L_ERCD,L_ERMT);
FF_WRAPPER_PKG
FF_WRAPPER_PKG.
FF_WRAPPER_PKG.
FF_WRAPPER_PKG.
FF_WRAPPER_PKG.
FF_WRAPPER_PKG.
FF_WRAPPER_PKG.
END FORMULA;

Ovetloaded
procedures
used in the
FF
execution
engine

PROCEDURE FORMULA (D I UT NOCOPY FF_WRAPPER_PKG.T_DATE,

N IN OUT NOCOPY FF_WRAPPER_PKG.T_NUMBER,

T IN OUT NOCOPY FF_WRAPPER_PKG.T_TEXT,

I IN OUT NOCOPY FF_WRAPPER_PKG.T_NUMBER,

FFERLN OUT NOCOPY NUMBER,FFERCD IN OUT NOCOPY NUMBER,FFERMT OUT NOCOPY
Is

FFERCD,

VARCHAR2)

FFERMT
)i

END FORMULA; <
PROCEDURE FORMULA (

T2 IN OUT NOCOPY VARCHAR2,
I2 IN OUT NOCOPY NUMBER,

D1 IN OUT NOCOPY DATE,

T3 IN OUT NOCOPY VARCHAR2,
I3 IN OUT NOCOPY NUMBER,

T1 IN OUT NOCOPY VARCHAR2,
I1 IN OUT NOCOPY NUMBER,

N1 IN OUT NOCOPY NUMBER,
FFERLN OUT NOCOPY NUMBER,
FFERCD IN OUT NOCOPY NUMBER,
FFERMT OUT NOCOPY VARCHAR2)

Is

The
procedure
that actually
performs
the formula
logic

/* JRTEST2*/

LEMT VARCHAR2 (255) ;
L_ERCD NUMBER(15,0);
L_ PLS_INTEGER;

R_ VARCHAR2 (255) ;
BEGIN

DECLARE

EX1 EXCEPTION;
NULL_FOUND EXCEPTION;
tv0 VARCHAR2 (255) ;
tvl VARCHAR2 (255);
CURSOR CO IS

SELECT

White Paper Title

Page 26

PEOPLE.first_name,

PEOPLE.last_name,

'FF ROUTE:SEH_PER_PERSON_DETAILS_PERF'
FROM

per_all_people_f PEOPLE

, per_person_types PTYPE

, per_phones PHONE

, fnd_sessions SES SQL to
, hr_lookups a

, hr_lookups b « evaluate
, hr_lookups c

, hr_lookups d t}le

, per_all_assignments_f ASSIGN

where D1 BETWEEN ASSIGN.effective_start_date I)atal)ase
AND ASSIGN.effective_end_date

and ASSIGN.assignment_id = N1

and PEOPLE.person_id = ASSIGN.person_id Iterlls

and D1 BETWEEN PEOPLE.effective_start_date
AND PEOPLE.effective_end_date
and PTYPE.person_type_id = PEOPLE.person_type_id

and PHONE.parent_id (+) = PEOPLE.person_id
AND PHONE.parent_table (+)= 'PER_PEOPLE_F'
and PHONE.phone_type (+)= 'W1l'

AND D1 BETWEEN NVL (PHONE.date_from(+),D1)
AND NVL (PHONE.date_to (+),D1)

and a.lookup_type = 'YES_NO'

and a.lookup_code = nvl(PEOPLE.current_applicant_flag, 'N')

and a.application_id = 800

and b.lookup_type = 'YES_NO'

and b.lookup_code = nvl (PEOPLE.current_npw_flag, 'N')

and b.application_id = 800

and c.lookup_type = 'YES_NO'

and c.lookup_code = nvl(PEOPLE.current_employee_flag, 'N')

and c.application_id = 800

and d.lookup_type = 'REGISTERED_DISABLED'

and d.lookup_code = nvl(PEOPLE.registered_disabled_flag, 'N"')

and d.application_id = 800

and SES.session_id = USERENV('SESSIONID');
BEGIN

L_ERCD:=0;

LEMT:='OB';

L, 3=63

e (il i, 0 0)) p

IF I1=0 OR I2=0 THEN 4 Formula
BEGIN 10 C
LEMT:='PER_FIRST_NAME'; g?
OPEN CO;
FETCH CO INTO tvO,tvl,R_;

IF CO%notfound THEN CLOSE CO; RAISE NO_DATA_FOUND; END IF;
CLOSE CO;

IF tv0 IS NULL THEN

I1l:=-2;

ELSE Il:=-1; Tl:=tv0; END IF;

IF tvl IS NULL THEN

LEMT:='PER_LAST_NAME'; RAISE NULL_FOUND;

ELSE I2:=-1; T2:=tvl; END IF;

EXCEPTION

WHEN NO_DATA_FOUND THEN L_ERCD := 3; RAISE NO_DATA_FOUND;
END;

END IF;

T3:=(T1 || " ' || T2);

I3:=-1;

L_:=8;
I3:=1;
GOTO FFX;
<<FFX>>

NULL;

EXCEPTION
WHEN EX1 THEN L_ERCD := 1;

WHEN ZERO_DIVIDE THEN L_ERCD Iirr()r
WHEN NO_DATA_FOUND THEN L_ERCD
WHEN TOO_MANY_ROWS THEN L_ERCD
WHEN VALUE_ERROR THEN L_ERCD:=5;
WHEN INVALID_NUMBER THEN L_ERCD:=6;

Handling

WHEN NULL_FOUND THEN L_ERCD:=7;
WHEN HR_UTILITY.HR_ERROR THEN

BEGIN
LEMT :=SUBSTRB (HR_UTILITY.GET_MESSAGE, 1,255) ;
L_ERCD:=8;

END;

WHEN OTHERS THEN

IF SQLCODE = 1 THEN L_ERCD:=-6510;

ELSE L_ERCD:=SQLCODE; END IF;

LEMT : =SUBSTRB (LEMT| | ' ' | |SQLERRM, 1, 255) ;
END;

FFERLN:=L_; FFERCD:
END FORMULA;

END
FFP63208_16052005

i

L_ERCD; FFERMT:=LEMT;

White Paper Title Page 27

APPENDIX D — DATABASE ITEM SCRIPT

The following script can be used to list out the definition of a database item:

set pagesize 999

set heading off

set array 1

set long 30000

set feedback off

set verify off

set echo off

set embedded on

column dtxt format a80

column parameter_name format al5
column value format a40

spool route

pro DBI.DEFINITION_TEXT / ROUTE_TEXT

select 'Select '||DEFINITION_TEXT ,

'/* dbi.data_type('||dbi.data_typel|"')*/' dtxt,

'/* ue.not_found_allowed('||ue.NOTFOUND_ALLOWED_FLAG||')*/' dtxt,

'/* dbi.null_allowed_flag('||Dbi.NULL_ALLOWED_FLAG]||')*/'dtxt,

'/* ue.leg_code/bg('||nvl(ue.legislation_code,ue.business_group_id) ||"')*/' dtxt,'/*
route_name('||r.route_name|| ')*/ from ' dtxt, r.text

from ff_database_items dbi, ff_user_entities ue,
ff_routes r

where ue.user_entity_id = dbi.user_entity_id

and user_name like upper ('&&user_name')

and ue.route_id = r.route_id(+)

/

pro

pro FF_ROUTE_CONTEXT_USAGES

set heading on

select r.route_id, sequence_no, context_name from ff_ route_context_usages rcu ,

ff_database_items dbi,ff_user_entities ue,
ff_routes r, ff_contexts c

where ue.user_entity_id = dbi.user_entity_id

and user_name like upper ('&&user_name')

and ue.route_id = r.route_id(+)

and r.route_id = rcu.route_id

and rcu.context_id = c.context_id

order by 1

/

pro

pro FF_ROUTE_PARAMETER_VALUES

select sequence_no, parameter_name, value from ff_ route_parameters rp,

ff_database_items dbi, ff_user_entities ue, ff_route_parameter_values rpv,
ff_routes r

where ue.user_entity_id = dbi.user_entity_id

and user_name like upper ('&&user_name')

and ue.route_id = r.route_id(+)

and r.route_id = rp.route_id

and rpv.route_parameter_id = rp.route_parameter_id

and rpv.user_entity id = ue.user_entity_ id

order by 1

/

spool off
undefine user_name

White Paper Title

Page 28

APPENDIX E — RELATED DOCUMENTS

The following related documents could be found on Metalink:
Note 296833.1 - Troubleshooting Guide for Fast Formula issues in Benefits

Note 218059.1 - Oracle Fast Formula Reference Guide for Standard and
Advanced Benefits

Note 223280.1 - Using Oracle Fast Formula for creating fast formulas

Note 160469.1 - R11.5 How to Setup and Run PYUPIP on a Form

Note 260552.1 - Understanding PT'O changes (Accrual changes) since HRMS PF_D
Note 211422.1 - Fast Formula FAQ

Note 108341.1 - An Introduction to HR: System Profiles

Note 256842.1 - How to Display Debug Messages in Payroll Fast Formula

White Paper Title Page 29

ORACLE

Debugging HRMS Fast Formula
May 2005

Author: John Rhodes
Contributing Authors:

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
www.oracle.com

Oracle Corporation provides the software
that powers the internet.

Oracle is a registered trademark of Oracle Corporation. Various
product and service names referenced herein may be trademarks
of Oracle Corporation. All other product and service names
mentioned may be trademarks of their respective owners.

Copyright © 2000 Oracle Corporation
All rights reserved.

